3.25 \(\int \frac{(e x)^m (A+B x^n)}{c+d x^n} \, dx\)

Optimal. Leaf size=78 \[ \frac{B (e x)^{m+1}}{d e (m+1)}-\frac{(e x)^{m+1} (B c-A d) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )}{c d e (m+1)} \]

[Out]

(B*(e*x)^(1 + m))/(d*e*(1 + m)) - ((B*c - A*d)*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -(
(d*x^n)/c)])/(c*d*e*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.0395393, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {459, 364} \[ \frac{B (e x)^{m+1}}{d e (m+1)}-\frac{(e x)^{m+1} (B c-A d) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )}{c d e (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(A + B*x^n))/(c + d*x^n),x]

[Out]

(B*(e*x)^(1 + m))/(d*e*(1 + m)) - ((B*c - A*d)*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -(
(d*x^n)/c)])/(c*d*e*(1 + m))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(e x)^m \left (A+B x^n\right )}{c+d x^n} \, dx &=\frac{B (e x)^{1+m}}{d e (1+m)}-\frac{(B c (1+m)-A d (1+m)) \int \frac{(e x)^m}{c+d x^n} \, dx}{d (1+m)}\\ &=\frac{B (e x)^{1+m}}{d e (1+m)}-\frac{(B c-A d) (e x)^{1+m} \, _2F_1\left (1,\frac{1+m}{n};\frac{1+m+n}{n};-\frac{d x^n}{c}\right )}{c d e (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.0645983, size = 57, normalized size = 0.73 \[ \frac{x (e x)^m \left ((A d-B c) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )+B c\right )}{c d (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(A + B*x^n))/(c + d*x^n),x]

[Out]

(x*(e*x)^m*(B*c + (-(B*c) + A*d)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -((d*x^n)/c)]))/(c*d*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 0.36, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex \right ) ^{m} \left ( A+B{x}^{n} \right ) }{c+d{x}^{n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(A+B*x^n)/(c+d*x^n),x)

[Out]

int((e*x)^m*(A+B*x^n)/(c+d*x^n),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{B e^{m} x x^{m}}{d{\left (m + 1\right )}} -{\left (B c e^{m} - A d e^{m}\right )} \int \frac{x^{m}}{d^{2} x^{n} + c d}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n),x, algorithm="maxima")

[Out]

B*e^m*x*x^m/(d*(m + 1)) - (B*c*e^m - A*d*e^m)*integrate(x^m/(d^2*x^n + c*d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{n} + A\right )} \left (e x\right )^{m}}{d x^{n} + c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n),x, algorithm="fricas")

[Out]

integral((B*x^n + A)*(e*x)^m/(d*x^n + c), x)

________________________________________________________________________________________

Sympy [C]  time = 3.17009, size = 284, normalized size = 3.64 \begin{align*} \frac{A e^{m} m x x^{m} \Phi \left (\frac{d x^{n} e^{i \pi }}{c}, 1, \frac{m}{n} + \frac{1}{n}\right ) \Gamma \left (\frac{m}{n} + \frac{1}{n}\right )}{c n^{2} \Gamma \left (\frac{m}{n} + 1 + \frac{1}{n}\right )} + \frac{A e^{m} x x^{m} \Phi \left (\frac{d x^{n} e^{i \pi }}{c}, 1, \frac{m}{n} + \frac{1}{n}\right ) \Gamma \left (\frac{m}{n} + \frac{1}{n}\right )}{c n^{2} \Gamma \left (\frac{m}{n} + 1 + \frac{1}{n}\right )} + \frac{B e^{m} m x x^{m} x^{n} \Phi \left (\frac{d x^{n} e^{i \pi }}{c}, 1, \frac{m}{n} + 1 + \frac{1}{n}\right ) \Gamma \left (\frac{m}{n} + 1 + \frac{1}{n}\right )}{c n^{2} \Gamma \left (\frac{m}{n} + 2 + \frac{1}{n}\right )} + \frac{B e^{m} x x^{m} x^{n} \Phi \left (\frac{d x^{n} e^{i \pi }}{c}, 1, \frac{m}{n} + 1 + \frac{1}{n}\right ) \Gamma \left (\frac{m}{n} + 1 + \frac{1}{n}\right )}{c n \Gamma \left (\frac{m}{n} + 2 + \frac{1}{n}\right )} + \frac{B e^{m} x x^{m} x^{n} \Phi \left (\frac{d x^{n} e^{i \pi }}{c}, 1, \frac{m}{n} + 1 + \frac{1}{n}\right ) \Gamma \left (\frac{m}{n} + 1 + \frac{1}{n}\right )}{c n^{2} \Gamma \left (\frac{m}{n} + 2 + \frac{1}{n}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(A+B*x**n)/(c+d*x**n),x)

[Out]

A*e**m*m*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c*n**2*gamma(m/n + 1 + 1/n)
) + A*e**m*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c*n**2*gamma(m/n + 1 + 1/
n)) + B*e**m*m*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c*n**2*g
amma(m/n + 2 + 1/n)) + B*e**m*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 +
 1/n)/(c*n*gamma(m/n + 2 + 1/n)) + B*e**m*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gam
ma(m/n + 1 + 1/n)/(c*n**2*gamma(m/n + 2 + 1/n))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{n} + A\right )} \left (e x\right )^{m}}{d x^{n} + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n),x, algorithm="giac")

[Out]

integrate((B*x^n + A)*(e*x)^m/(d*x^n + c), x)